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SUMMARY

Results are described from a combined mathematical modeling and numerical iteration schemes of flow
and vibration. We consider the coupling numerical simulations of both turbulent flow and structure
vibration induced by flow. The methodology used is based on the stabilized finite element formulations
with time integration. A fully coupled model of flow and flow-induced structure vibration was established
using a hydride generalized variational principle of fluid and solid dynamics. The spatial discretization
of this coupling model is based on the finite element interpolating formulations for the fluid and solid
structure, while the different time integration schemes are respectively used for fluid and solid structure to
obtain a stabilized algorithm. For fluid and solid dynamics, Hughes’ predictor multi-corrector algorithm
and the Newmark method are monolithically used to realize a monolithic solution of the fully coupled
model. The numerical convergence is ensured for small deformation vibrating problems of the structure
by using different time steps for fluid and solid, respectively. The established model and the associated
numerical methodology developed in the paper were then applied to simulate two different flows. The first
one is the lid-driven square cavity flow with different Reynolds numbers of 1000, 400 and 100 and the
second is the turbulent flows in a 3-D turbine blade passage with dynamical fluid–structure interaction.
Good agreement between numerical simulations and measurements of pressure and vibration acceleration
indicates that the finite element method formulations developed in this paper are appropriate to deal with
the flow under investigation. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A flow passage, consisting of 3-D hydro-turbine blades, is a complex geometry configuration. As
high speed flow entering from the inlet interacts strongly with the blades to exchange its kinetic
energy into machinery energy for generating electricity, a complicated evolution of the turbulent
flow in the passage with high Reynolds number is produced in accompanying with such strong
interaction between fluid and solid structure. The flow-induced vibration of the blade structure is
called flow-induced vibrations [1, 2]. Such vibration interacts with flow near the wall surfaces as if
there were many unsteady sources/sinks on the boundaries, thereby transferring the kinetic energy
in/out of fluid. Such interacting mechanism between fluid and solid structure is called dynamical
fluid–structure interaction (FSI).

Fluid interacting with flexible solid structure is frequently encountered in many industrial areas
of civil, energy, mechanical, aerospace and biomechanical engineering. Modeling of the flow
subjected to the interaction has been received much attention in recent years. The methodology of
the numerical simulations has been extensively developed for modeling the turbulent flows. For
example, the direct numerical simulation and the large eddy simulation (LES), being the most
powerful tools to study turbulent flows, have been widely applied in past decade [3–16] to model the
flow in which the Reynolds number is relatively low and the flow pattern is comparatively simple.
With the rapid development of computing resources and techniques, study of complex turbulent
flows with high Reynolds numbers becomes realistic. However, knowledge on the simulation of
turbulent flows with dynamical FSI is still lacking as these attractive methods exclude the vibrations
of solid structures. On one hand, the vibration of solid structure largely increases the difficulty of
the generation of well body-fitted curvilinear meshes on a near-wall region, which likely leads to
a failure of simulation due to the vibration intruding into the fluid cells. On the other hand, the
incorporation of flow simulation and vibration analysis results in problem of numerical stability due
to the significant difference in physical characteristics between fluid and solid. In previous studies,
simulations of flow with moving and/or deforming boundaries are often performed using the arbi-
trary Lagrangian Eulerian formulation (ALE) [17–19], or the immersed boundary method (IBM)
[20–24] to deal with kinetic efforts of the meshes due to moving boundary. Generally speaking, it
is difficult to simultaneously include mutual dynamical influence between flow and flow-induced
vibration. Comparing with ALE and IBM, the finite element formulations are probably a more
appropriate and powerful tool to treat the dynamical FSI problems. Thus, simulation methodolo-
gies based on the finite element formulations were extensively studied and used successfully to
model complicated FSI problems [25–37]. The motivation of this study, therefore, is to establish
a fully coupled model and its solving methodology based on the finite element formulations of
fluid and solid dynamics in order to effectively simulate flows with dynamical FSI and to explore
conveniently temporal and spatial features of the turbulence in complex configuration.

Computing techniques used in the pervious studies for flow–vibration system may be classified
as monolithic [38–42] and partitioned methods [43–46] for flow with moving boundary. In mono-
lithic methods, vibration is closely related to flow as moving boundary at the same time level,
whereas in partitioned methods, flow and vibration are separately solved in turn, which provides
flexibility to choose different solvers for each of the modules. For example in Reference [43],
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a combination of LES for flow and finite element method (FEM) for flow-induced vibration was
used to simulate the high Reynolds number turbulent flow in a strongly 3-D hydro-turbine blade
passage with dynamical FSI. In fact, the finite element formulations have significant advantages
in computing flow in a complex passage with dynamical FSI. Guruswamy and Byun [35, 36]
computed respectively plate and shell structures in Eulerian and incompressible viscous flow fields
using the finite element structures. They used a domain decomposition method, in which fluid and
structure were solved in separate modules. Using the same method, Garica and Guruswamy [37]
obtained the transonic aeroelastic response of a 3-D wing in incompressible viscous flow field.
Teixeira and Awruch [34] improved the computational efficiency by reducing the internal degree
of freedoms (DOFs) of the structure in the equation, namely, only DOFs corresponding to the
interface were used in the solution. A significant achievement in the field of the finite element
formulations for fluid and structure dynamics is the stabilized finite element formulations intro-
duced by Hughes and co-workers [47, 48] and then further developed by Tezduyar [25, 28, 31, 32]
and Tezduyar and Sathe [33]. The stabilized technique used in simulation was an adding term based
on the streamline-upwind/Petrov–Galerkin and the pressure-stabilizing/Petrov–Galerkin formula-
tions for compressible and incompressible flows, respectively. It is well known that a drawback
of the approaches of the finite element formulations is that they produce an ill-conditioned coeffi-
cient matrix due to fluid mesh distortion generated by vibration/moving walls and distinguished
substantial characteristics of fluid and solid structure. A straightforward approach to overcome this
drawback is to develop an appropriate correction technique of meshes. Some algorithms based on
pre-conditions are better solvers for treating the coupled formulations [33, 49, 50].

The focus of the present study is to establish a fully coupled model for flow and flow-induced
vibration and its monolithically solving methodology based on the finite element formulations
to simulate turbulent flows in a 3-D turbine blade passage with the dynamical FSI. To this
end, a hydride generalized variational principle of fluid and solid dynamics based on a power
dissipation balance in fluid–solid system under consideration is firstly developed to describe the
dynamical interactions between fluid flow and flow-induced vibration. The Newmark method for
solid structure and the predictor multi-corrector algorithm (PMCA) for fluid are respectively applied
as the time integrations. An iteration scheme for both fluid and solid structure is integrated at the
same time level to realize a monolithic solution of the fully coupled model. Two numerical examples
have been performed to validate the model and the associated numerical methodology developed in
this paper. The first numerical example is a benchmark problem of the lid-driven square cavity flow
with the different Reynolds numbers of 1000, 400 and 100, and the second is the turbulent flow in
a 3-D turbine blade passage cited from Reference [43]. Laboratory experiments were carried out
to measure the vibration accelerations of the blade and the pressures at the surfaces of the blade
using acceleration and Kulite LL-072-25A transducers mounted at the specified locations of the
blade. Good agreement between numerical simulation and measurements was obtained, indicating
that the numerical model developed can be applied to simulate the complex turbulent flow with
the dynamic FSI.

2. HYBRID GENERALIZED VARIATIONAL PRINCIPLE OF FLUID
AND SOLID DYNAMICS

The geometrical configuration of the flow passage under consideration in this study is shown in
Figure 1, which is one blade passage taken from a hydro-turbine runner. The blade passage consists
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Figure 1. Components of hydro-turbine blade passage used in the present paper: (a) blade cascades;
(b) blade passage; (c) blade; and (d) blade attached to crown and band.

of two blades, the crown and the band. The computational domains of fluid and solid structure
are designated as �f and �s, respectively. The boundaries of the domains are �f=A1+A2+A3+
A4+A5+A6 for fluid and �s=A3+A4+A5+A6 for solid structure, in which the inlet and outlet
surfaces of fluid domain are defined as A1 and A2, the restricted surfaces of the blade attached
to the crown and the band as A7 and A8 and the interfaces between fluid and solid structure
as �fs=A3+A4+A5+A6. We consider small magnitude vibration of solid structure excited by
flow. The dynamical governing equations of the small magnitude vibration are stated as

�u̇si
�t

+ci j u̇
s
j −�si j, j −F s

i =0 in �s (1)

ps=usk,k in �s (2)

�si j =�susk,k�i j +�s(usi, j +usj,i ) or �si j =�s ps�i j +2�sεsi j in �s (3)

�si j n
s
j +�fi j n

f
j =0 on �fs (4)

For incompressible viscous fluid flowing through the blade passage, the governing equations of
flow are

�u̇fi
�t

+ u̇fj u̇
f
i, j −�fi j, j −F f

i =0 in �f (5)

�fi j =−pf�i j +�f(u̇fi, j + u̇fj,i ) or �fi j =−pf�i j +2�fε̇fi j in �f (6)

u̇fk,k =0 in �f (7)

u̇fi = u̇f0i on A1 and A2 (8)

u̇fi − u̇si =0 on �fs (9)

�fi j n
f
j +�si j n

s
j =0 on �fs (10)
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where �∗
i j is the stress tensor (divided by the mass density �∗, the superscript star indicates fluid for

∗= f and structure for ∗=s, respectively), ε∗
i j the strain tensor, ci j the viscous damping coefficient

tensor of the solid structure (divided by the mass density �s), �i j the Kronecker delta, F∗
i the body

forces, pf the fluid pressure (divided by the mass density �f), ps the bulk strain of the solid structure,
�s=E�/(1+�)(1−2�)�s and �s=E/2(1+�)�s the material constants of the solid structure, E and
� Young’s modulus and Poisson’s ratio, �f kinetic viscosity of fluid, u̇∗

i the velocity, n
∗
j the outward

normal unit vector of the boundary, the over-dot represents the derivatives with respect to time,
u̇f0i the known velocity conditions on the inlet (u̇f0i = u̇finleti ) and outlet (u̇f0i = u̇foutleti ) surfaces A1
and A2, respectively, in which on the outlet surface A2 u̇f0i = u̇foutleti is taken as the convective
outflow condition.

The Bubnov–Galerkin method is used to deduce a system functional describing the interactions
between fluid and solid structure. The functional variational form of the fluid–structure system is

��̂
fsi =

∫ ∫ ∫
�f

(
�u̇fi
�t

+ u̇fj u̇
f
i, j −�fi j, j −F f

i

)
Gf

i d�+
∫ ∫

�fs
(�fi j n

f
j +�si j n

s
j )H

f
i dA

+
∫ ∫ ∫

�s

(
�u̇si
�t

+ci j u̇
s
j −�si j, j −F s

i

)
Gs

i d�+
∫ ∫

�fs
(�si j n

s
j +�fi j n

f
j )H

s
i dA (11)

where Gf
i , G

s
i , H

f
i and H s

i are arbitrary weighted functions. Letting Gf
i =�u̇fi , G

s
i =�u̇si , we obtain

the formula below

��̂
fsi =

∫ ∫ ∫
�f

[
�u̇fi
�t

�u̇fi + u̇fj u̇
f
i, j�u̇

f
i −F f

i �u̇
f
i +

1

2
�fi j�(u̇fi, j + u̇fj,i )

]
d�

+
∫ ∫ ∫

�s

[
�u̇si
�t

�u̇si +ci j u̇
s
j�u̇

s
i −F s

i �u̇
s
i +

1

2
�si j�(u̇si, j + u̇sj,i )

]
d�

+
∫ ∫

�fs
�fi j n

f
j (H

f
i −�u̇fi )dA+

∫ ∫
�fs

�si j n
s
j (H

s
i −�u̇si )dA

+
∫ ∫

�fs
(�si j n

s
j H

f
i +�fi j n

f
j H

s
i )dA (12)

Provided that H f
i =�u̇fi , H

s
i =�u̇si , the above equation can be simplified as

��̂
fsi
i =

∫ ∫ ∫
�f

[(
�u̇fi
�t

+ u̇fj u̇
f
i, j −F f

i

)
�u̇fi +

1

2
�fi j�(u̇fi, j + u̇fj,i )

]
d�

+
∫ ∫ ∫

�s

[(
�u̇si
�t

+ci j u̇
s
j −F s

i

)
�u̇si +

1

2
�si j�(u̇si, j + u̇sj,i )

]
d�

+
∫ ∫

�fs
(�si j n

s
j�u̇

f
i +�fi j n

f
j�u̇

s
i )dA (13)
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From Equations (3) and (6), �(usi, j +usj,i ) and �(u̇fi, j + u̇fj,i ) are expressed as

�(usi, j +usj,i )=
1

�s
��si j −

�s

�s
�ps�i j (14)

�(u̇fi, j + u̇fj,i )=
1

�f
��fi j +

1

�f
�pf�i j (15)

�fi i =−3pf+2�fu̇fi,i =−3pf (16)

�si i =3�s ps+2�susi,i =(3�s+2�s)ps (17)

Substituting Equations (14)–(17) into Equation (13) yields another formulation of the functional
variation of the system

��̂
fsi
i =

∫ ∫ ∫
�f

(
�u̇fi
�t

+ u̇fj u̇
f
i, j

)
�u̇fi d�+

∫ ∫ ∫
�s

�u̇si
�t

�u̇si d�+
∫ ∫ ∫

�s
ci j u̇

s
j�u̇

s
i d�

+�
∫ ∫ ∫

�f

1

4�f
(�fkl�

f
kl −3pf pf)d�+�

∫ ∫ ∫
�s

1

4�s
[�skl�skl −�s(3�s+2�s)ps ps]d�

−�
∫ ∫ ∫

�f
F f
i u̇

f
i d�−�

∫ ∫ ∫
�s

F s
i u̇

s
i d�+

∫ ∫
�fs

(�si j n
s
j )�u̇

f
i dA

+
∫ ∫

�fs
(�fi j n

f
j )�u̇

s
i dA (18)

The first and second terms on the right-hand side of Equation (18) represent the total kinetic energy
of fluid and solid per unit time, the third and fourth are the viscous dissipative energy, the fifth
is the elastic deforming energy reserved in solid, the sixth and seventh indicate the work done
by body forces and the final two terms are defined as mutual work done between fluid and solid
structure due to interaction. Obviously, the functional �̂fsi

i represents the dissipative power in the
fluid–solid system; thus, it is called power functional of the system in the present paper.

As it is convenient to use u̇fi , p
f and usi as unknowns of the system under consideration, �fkl�

f
kl −

3pf pf and �skl�kl −�s(3�s+2�s)ps ps in Equation (18) are replaced using following formulas:

�fi j�
f
i j −3pf pf=2(�f)2(u̇fi, j + u̇fj,i )u̇

f
i, j (19)

�si j�i j −�s(3�s+2�s)ps ps=2(�s)2(usi, j +usj,i )u
s
i, j (20)

Thus, Equation (18) is rewritten as

��̂
fsi
i =

∫ ∫ ∫
�f

(
�u̇fi
�t

+ u̇fj u̇
f
i, j −F f

i

)
�u̇fi d�+

∫ ∫ ∫
�s

(
�u̇si
�t

+ci j u̇
s
j −F s

i

)
�u̇si d�

+�
∫ ∫ ∫

�f

�f

2
(u̇fi, j + u̇fj,i )u̇

f
i, j d�+�

∫ ∫ ∫
�s

�s

2
(usi, j +usj,i )u

s
i, j d�

+
∫ ∫

�fs
[�s psnsj�i j +�s(usi, j +usj,i )n

s
j ]�u̇fi dA

+
∫ ∫

�fs
[−pfnfj�i j +�f(u̇fi, j + u̇fj,i )n

f
j ]�u̇si dA (21)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1299–1330
DOI: 10.1002/fld



FEM SIMULATION OF TURBULENT FLOW WITH FSI 1305

Three types of Lagrangian multipliers of �, 	i and �i are employed to relax three restricted
conditions, namely Equations (7), (8) and (9). A generalized variational principle based on fluid
and solid mechanics is thus constructed as

��fsi
i =��̂

fsi
i +�

∫ ∫ ∫
�f

�u̇fk,k d�+�
∫ ∫

A1+A2
	i (u̇

f
i − u̇f0i )dA+�

∫ ∫
�fs

�i (u̇
f
i − u̇si )dA (22)

Expanding Equation (22) by using variational operation, the following formulation is obtained:

��fsi
i =

∫ ∫ ∫
�f

[
�u̇fi
�t

+ u̇fj u̇
f
i, j −F f

i −�,i −�f(u̇fi, j + u̇fj,i ), j

]
�u̇fi d�+

∫ ∫ ∫
�f

��u̇fk,k d�

+
∫ ∫ ∫

�s

[
�u̇si
�t

+ci j u̇
s
j −F s

i −�s ps, j�i j −�s(usi, j +usj,i ), j

]
�u̇si d�

+
∫ ∫

A1+A2
[	i +�nfj�i j +�f(u̇fi, j + u̇fj,i )n

f
j ]�u̇fi dA

+
∫ ∫

�fs
{[�i +�nfj�i j +�f(u̇fi, j + u̇fj,i )n

f
j ]+[�s ps�i j nsj +�s(usi, j +usj,i )n

s
j ]}�u̇fi dA

+
∫ ∫

�fs
{[−pf�i j n

f
j +�f(u̇fi, j + u̇fj,i )n

f
j ]−�i +[�s psnsj�i j +�s(usi, j +usj,i )n

s
j ]}�u̇si dA

+
∫ ∫

A1+A2
(u̇fi − u̇f0i )�	i dA+

∫ ∫
�fs

(u̇fi − u̇si )��i dA (23)

Applying the variational stationary conditions, ��fsi
i =0, we obtain the natural conditions of the

variation for fluid as

�u̇fi
�t

+ u̇fj u̇
f
i, j −F f

i −�,i −�f(u̇fi, j + u̇fj,i ), j =0 in �f (24)

u̇fk,k =0 in �f (25)

u̇fi − u̇f0i =0 on A1 and A2 (26)

u̇fi − u̇si =0 on �fs (27)

	i +�nfj�i j +�f(u̇fi, j + u̇fj,i )n
f
j =0 on A1 and A2 (28)

�i +�nfj�i j +�f(u̇fi, j + u̇fj,i )n
f
j +�s ps�i j n

s
j +�s(usi, j +usj,i )n

s
j =0 on �fs (29)

and for solid as

�u̇si
�t

+ci j u̇
s
j −F s

i −�s ps, j�i j −�s(usi, j +usj,i ), j =0 in �s (30)

−pf�i j n
f
j +�f(u̇fi, j + u̇fj,i )n

f
j −�i +�s psnsj�i j +�s(usi, j +usj,i )n

s
j =0 on �fs (31)
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The solutions of the Lagrangian multipliers are easily obtained as

�=−pf in �f (32)

	i =−�fi j n
f
j on A1 and A2 (33)

�i =0 on �fs (34)

where �i =0 implies that the no-slip condition on the interface between fluid and solid structure is
not stated as a natural condition of the hybrid generalized variational principle of the fluid–structure
system due to unknown velocity on the interface. Therefore, instead of using Equation (27) as a
natural condition, it is still used as a restricted condition, which leads to a partial hybrid generalized
variational principle (PHGVP).

Substituting the solved Lagrangian multipliers of �, 	i and �i into Equation (22) and applying
the restricted condition of u̇fi − u̇si =0 yields the power functional variation of the coupling system
based on PHGVP,

��fsi
i =��̂

fsi
i0 −��̂

fsi
i1 (35)

The variational expansions of ��̂
fsi
i0 and ��̂

fsi
i1 are

��̂
fsi
i0 =

∫ ∫ ∫
�f

[(
�u̇fi
�t

+u̇fj u̇
f
i, j−F f

i

)
�u̇fi+�fi j�ε̇fi j

]
d�

+
∫ ∫ ∫

�s

[(
�u̇si
�t

+ci j u̇
s
j−F s

i

)
�u̇si+�si j�ε̇si j

]
d�−

∫ ∫ ∫
�f

(�pfu̇fk,k+pf�u̇fk,k)d� (36)

��̂
fsi
i1 =

∫ ∫
A1+A2

nfj (u̇
f
i − u̇f0i )��fi j dA+

∫ ∫
A1+A2

�fi j n
f
j�u̇

f
i dA

−
∫ ∫

�fs
(�si j n

s
j�u̇

f
i +�fi j n

f
j�u̇

s
i )dA (37)

Equations (36) and (37) are the formulations of PHGVP for the coupling system under
consideration.

3. FINITE ELEMENT FORMULATIONS ON PHGVP

In the present study, the finite element formulations are applied to create a flexible numerical
scheme for both fluid and solid structure. To this end, the values of the variables (u̇fi , p

f,usi ) in
element level are stated in an interpolation of the nodal values of an element, namely,

u̇f(x, y, z, t)=Ne(x, y, z)u̇fe(t) (38)

pf(x, y, z, t)= N̂e(x, y, z)pfe(t) (39)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1299–1330
DOI: 10.1002/fld



FEM SIMULATION OF TURBULENT FLOW WITH FSI 1307

us(x, y, z, t)=Ne(x, y, z)use(t) (40)

rs=DsLus=DsLNeuse (41)

rf=Dppf+DfLu̇f=DpN̂epfe+DfLNeu̇fe (42)

Thus, the finite element formulations based on PHGVP can be written in the global matrix
notation as

�Pfsi =
EN

A
e=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u̇fTe

{∫ ∫ ∫
�f
e

NT
eNeüfe+NT

eNeu̇fe(�Ne)u̇fe+(LNe)
TDf(LNe)u̇fe−NT

eNeFf
e]d�

∫ ∫ ∫
�f
e

[(LNe)
TDpN̂epfe−NT

e (L�N̂e)pfe]d�+
∫ ∫

�fs
e

NT
e n

sDs(LNe)use dA

−
∫ ∫

A1+A2
[(nfDfLNe)

TNe(u̇fe−u̇f0e)+(NT
e n

fDpN̂epfe+NT
e n

fDf(LNe)u̇fe)]dA
}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−
EN

A
e=1

{
�pfTe

[∫ ∫ ∫
�f
e

N̂T
e (�Ne)u̇fe d�+

∫ ∫
A1+A2

(nfDpN̂e)
TNe(u̇fe−u̇f0e)dA

]}

+
EN

A
e=1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�u̇sTe

{∫ ∫ ∫
�s
e

[NT
e (Neüse+CdNeu̇se−NeFs

e)+(LNe)
TDs(LNe)use]d�

+
∫ ∫

�fs
e

NT
e n

f[DpN̂epfe+Df(LNe)u̇fe]dA
}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(43)

The corresponding vectors and matrices are defined as

u̇f(x, y, z, t)=[u̇f v̇f ẇf]T

pf(x, y, x, t)=[pf pf pf]T

us(x, y, z, t)=[us vs ws]T

u̇fe(t)=[u̇f1 v̇f1 ẇf
1 . . . u̇fi v̇fi ẇf

i . . . u̇fNN v̇fNN ẇf
NN]Te

pfe(t)=[pf1 pf1 pf1 . . . pfi pfi pfi . . . pfNN pfNN pfNN]Te
use(t)=[us1 vs1 ws

1 . . . usi vsi ws
i . . . usNN vsNN ws

NN]Te
r∗e(x, y, z, t)=[�∗

xx �∗
yy �∗

zz �∗
xy �∗

yz �∗
zx ]Te

Ne(x, y, z)=[IN1 . . . INi . . . INNN]e
N̂e(x, y, z)=[IN̂1 . . . IN̂i . . . IN̂NN]e
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Df =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2�f 0 0 0 0 0

2�f 0 0 0 0

2�f 0 0 0

�f 0 0

sysmetry �f 0

�f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ds=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�s+2�s �s �s 0 0 0

�s+2�s �s 0 0 0

�s+2�s 0 0 0

�s 0 0

sysmetry �s 0

�s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Dp=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0

0 −1 0

0 0 −1

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, L=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
�x

0 0

0
�
�y

0

0 0
�
�z

�
�y

�
�x

0

0
�
�z

�
�y

�
�z

0
�
�x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, L�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
�x

0 0

0
�
�y

0

0 0
�
�z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, �=
[

�
�x

�
�y

�
�z

]

n∗ =
⎡
⎢⎣
nx 0 0 ny 0 nz

0 nx 0 ny nz 0

0 0 nx 0 ny nz

⎤
⎥⎦

where Ne and N̂e are the element shape function matrices for the moving variables (flow velocity

and displacement) and fluid pressure, respectively, I is a 3×3 identical matrix, AEN
e=1 represents

the finite element assembly operator, NN and EN denote the number of the element nodes and
elements in the corresponding domain, superscript T stands for a transposed matrix and subscript
e for the eth element in the discretized domain. Using the restricted conditions u̇fi − u̇si =0 on the
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interface �fs and the variational stationary conditions, ��fsi
i =0, the finite element formulations

of the fully coupled system under consideration are stated as

EN

A
e=1

{∫ ∫ ∫
�f
e

[NT
eNeüfe+NT

eNeu̇fe�Neu̇fe+(LNe)
TDf(LNe)u̇fe−NT

eNeFf
e]d�

}

+
EN

A
e=1

{∫ ∫ ∫
�f
e

[(LNe)
TDpN̂epfe−NT

e (L�N̂e)pfe]d�
}

+
EN

A
e=1

{∫ ∫
�fs
e

NT
e n

sDs(LNe)use dA

}

−
EN

A
e=1

{∫ ∫
A1+A2

[NT
e n

fDpN̂epfe+NT
e n

fDf(LNe)u̇fe]dA
}

=0 (44)

EN

A
e=1

{∫ ∫ ∫
�f
e

N̂T
e (�Ne)u̇fe d�

}
=0 (45)

EN

A
e=1

{∫ ∫ ∫
�s
e

[NT
eNeüse+NT

eCdNeu̇se−NT
eNeFs

e+(LNe)
TDs(LNe)use]d�

}

+
EN

A
e=1

{∫ ∫
�fs
e

[NT
e n

fDpN̂epfe+NT
e n

fDf(LNe)u̇fe]dA
}

=0 (46)

Applying assembly operation to the element-level matrices, we can rewrite the above finite element
formulations in global form as

MfV̇f+Cf(Vf)Vf+BfPf+Ks
�fsU

s=MfFf (47)

CcVf=0 (48)

MsÜs+CsU̇s+KsUs+Bf
�fsP

f+Cf
�fsV

f=MsFs (49)

The above Equations (47)–(49) are subjected to the restricted condition on the interfaces �fs

Vf
�fs −U̇s

�fs =0 (50)

where the global matrices and the nodal vectors are defined as

Vf=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Vf
I

Vf
�fs

Vf
A1=Vf

inlet

Vf
A2=Vf

outlet

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
{
Vf
1

Vf
2

}
, Pf=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pf
I

Pf
�fs

Pf
A1

Pf
A2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
{
Pf
1

Pf
2

}
, Us=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Us
I

Us
�fs

Us
A7=0

Us
A8=0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
{
Us
1

Us
2

}
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Mf =

⎡
⎢⎢⎢⎢⎢⎢⎣

Mf
II Mf

I�fs Mf
IA1 Mf

IA2

Mf
�fsI

Mf
�fs�fs Mf

�fsA1
Mf

�fsA2

Mf
A1I Mf

A1�fs Mf
A1A1 0

Mf
A2I Mf

A2�fs 0 Mf
A2A2

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[
Mf

11 Mf
12

Mf
21 Mf

22

]

Cf(Vf)=

⎡
⎢⎢⎢⎢⎢⎢⎣

Cf
II Cf

I�fs Cf
IA1 Cf

I A2

Cf
�fsI

Cf
�fs�fs Cf

�fsA1
Cf

�fsA2

Cf
A1I Cf

A1�fs Cf
A1A1 0

Cf
A2I Cf

A2�fs 0 Cf
A2A2

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[
Cf
11(V

f) Cf
12(V

f)

Cf
21(V

f) Cf
22

]

Bf=

⎡
⎢⎢⎢⎢⎢⎢⎣

Bf
II Bf

I�fs Bf
IA1 Bf

IA2

Bf
�fsI

Bf
�fs�fs Bf

�fsA1
Bf

�fsA2

Bf
A1I Bf

A1�fs Bf
A1A1 0

Bf
A2I Bf

A2�fs 0 Bf
A2A2

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[
Bf
11 Bf

12

Bf
21 Bf

22

]

Cc=

⎡
⎢⎢⎢⎢⎢⎣

Cc
II Cc

I�fs Cc
IA1 Cc

IA2

Cc
�fsI

Cc
�fs�fs Cc

�fsA1
Cc

�fsA2

Cc
A1I Cc

A1�fs Cc
A1A1 0

Cc
A2I Cc

A2�fs 0 Cc
A2A2

⎤
⎥⎥⎥⎥⎥⎦=

[
Cc
11 Cc

12

Cc
21 Cc

22

]

Cf
�fs =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 Cf
�fs�fs 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦=

[
Cf

�fs11
0

0 0

]

Bf
�fs =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 Bf
�fs�fs 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦=

[
Bf

�fs11
0

0 0

]
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Ms =

⎡
⎢⎢⎢⎢⎢⎣

Ms
II Ms

I�fs 0 0

Ms
�fsI

Ms
�fs�fs 0 0

0 0 Ms
A7A7 0

0 0 0 Ms
A8A8

⎤
⎥⎥⎥⎥⎥⎦=

[
Ms

11 0

0 Ms
22

]

Cs=

⎡
⎢⎢⎢⎢⎢⎣

Cs
II Cs

I�fs 0 0

Cs
�fsI

Cs
�fs�fs 0 0

0 0 Cs
A7A7 0

0 0 0 Cs
A8A8

⎤
⎥⎥⎥⎥⎥⎦=

[
Cs
11 0

0 Cs
22

]

Ks=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ks
II Ks

I�fs 0 0

Ks
�fsI

Ks
�fs�fs 0 0

0 0 Ks
A7A7 0

0 0 0 Ks
A8A8

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[
Ks

11 0

0 Ks
22

]

Ks
�fs =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 Ks
�fs�fs 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦=

[
Ks

�fs11
0

0 0

]

where the index translation is given below and the configurations of the nodes are shown in
Figure 2.

I all interior nodes in fluid or solid domain
A1 all nodes on surface A1
A2 all nodes on surface A2
�fs all nodes on interface �fs

A7 all nodes on surface A7
A8 all nodes on surface A8
1 block consisting of unknowns
2 block consisting of known boundary conditions (except pressure vector)

The global matrices corresponding to the element matrices are defined as

Mf=
EN

A
e=1

Mf
e=

EN

A
e=1

∫ ∫ ∫
�f
e

NT
eNe d�

Cf(Vf)=
EN

A
e=1

Cf
e(u̇

f
e)=

EN

A
e=1

∫ ∫ ∫
�f
e

[NT
eNeu̇fe(�Ne)+(LNe)

TDf(LNe)]d�
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All interior nodes in the fluid domain Solid domainSolid domain 

Solid domain

Solid domain

Figure 2. Nodal configurations in domains (the solid circles denote the shared nodes on the interface,
the empty circles denote all interior nodes for the fluid domain and the empty diamonds denote all

interior nodes for the solid domain).

Cf
�fs�fs =

EN

A
e=1

Cf
�fs
e
=

EN

A
e=1

∫ ∫
�fs
e

NT
e n

fDf(LNe)dA

Cf
A1A1=

EN

A
e=1

Cf
A1e=−

EN

A
e=1

∫ ∫
A1e

NT
e n

fDf(LNe)dA

Cf
A2A2=

EN

A
e=1

Cf
A2e=−

EN

A
e=1

∫ ∫
A2e

NT
e n

fDf(LNe)dA

Cc=
EN

A
e=1

Cm
e =

EN

A
e=1

∫ ∫ ∫
�f
e

N̂T
e (�Ne)d�

Bf=
EN

A
e=1

Bf
e=

EN

A
e=1

∫ ∫ ∫
�f
e

[(LNe)
TDpN̂e−NT

e (L�N̂e)]d�

Bf
�fs�fs =

EN

A
e=1

Bp

�fs
e
=

EN

A
e=1

∫ ∫
�fs
e

NT
e n

fDpN̂e dA

Bf
A1A1=

EN

A
e=1

Bp
A1e=−

EN

A
e=1

∫ ∫
A1e

NT
e n

fDpN̂e dA

Bf
A2A2=

EN

A
e=1

Bp
A2e=−

EN

A
e=1

∫ ∫
A2e

NT
e n

fDpN̂e dA
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Ms=
EN

A
e=1

Ms
e=

EN

A
e=1

∫ ∫ ∫
�s
e

NT
eNe d�

Cs=
EN

A
e=1

Cs
e=

EN

A
e=1

∫ ∫ ∫
�s
e

NT
eC

s
dNe d�

Ks=
EN

A
e=1

Ks
e=

EN

A
e=1

∫ ∫ ∫
�s
e

(LNe)
TDs(LNe)d�

Ks
�fs�fs =

EN

A
e=1

Ks
�fs
e
=

EN

A
e=1

∫ ∫
�fs
e

NT
e n

sDs(LNe)dA

After introducing inflow and outflow conditions at both the inlet and outlet surfaces, we obtain
the governing equations on the finite element formulations as below:

Mf
11V̇

f
1+Cf

11(V
f
1)V

f
1+Bf

11P
f
1+Bf

12P
f
2+Ks

�fs11
Us
1=Rf

1 (51)

Mf
21V̇

f
1+Cf

21(V
f
1)V

f
1+Bf

12P
f
1+Bf

22P
f
2=Rf

2 (52)

Cc
11V

f
1=Rc

1 (53)

Ms
11Ü

s
1+Cs

11U̇
s
1+Ks

11U
s
1+Bf

�fs11
Pf
1+Cf

�fs11
Vf
1=Rs

1 (54)

with

Rf
1=Mf

11F
f
1+Mf

12F
f
2−Mf

12V̇
f
2−Cf

12V
f
2 (55)

Rf
2=Mf

21F
f
1+Mf

22F
f
2−Mf

22V̇
f
2−Cf

22V
f
2 (56)

Rc
1=−Cc

12V
f
2 (57)

Rs
1=Ms

11F
s
1 (58)

where Vf
2 is the known vector consisting of inflow condition Vf

A1=Vf
inlet at the inlet and the

convective outflow condition Vf
A2=Vf

outlet at the outlet. We call the set of the governing equations
as a monolithic coupling model (MCM) of the interaction between flow and the flow-induced
vibration.

The incremental forms of MCM are used in order to have an effective solving action. Therefore,
Equations (51)–(54) are stated as

Mf
11�V̇

f
1+Cf

11(�V
f
1)�V

f
1+Bf

11�P
f
1+Bf

12�P
f
2+Ks

�fs11
�Us

1=�Rf
1 (59)

Mf
21�V̇

f
1+�Cf

21(�V
f
1)�V

f
1+Bf

12�P
f
1+Bf

22�P
f
2=�Rf

2 (60)

Cc
11�V

f
1=�Rc

1 (61)

Ms
11�Ü

s
1+Cs

11�U̇
s
1+Ks

11�U
s
1+Bf

�fs11
�Pf

1+Cf
�fs11

�Vf
1=�Rs

1 (62)
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where the increments based on a generalized trapezoidal rule are defined as

�Vf
1=��t�V̇f

1 (63)

�Us
1=
�t�U̇s

1=
�t�Vs
1 (64)

�Vs
1=�U̇s

1=��t�Üs
1=��t�V̇s

1 (65)

where �,
 and � are referred to as the stability control parameters of the time integration for both
the fluid and solid structures. Substituting Equations (63)–(65) into Equation (58)–(62) yields

M̃f
11(�V

f
1)�V

f
1+Bf

11�P
f
1+Bf

12�P
f
2+K̂s

�fs11
�Vs

1=�Rf
1 (66)

M̃f
21(�V

f
1)�V

f
1+Bf

21�P
f
1+Bf

22�P
f
2=�Rf

2 (67)

Cc
11�V

f
1=�Rc

1 (68)

M̃s
11�V

s
1+Bf

�fs11
�Pf

1+Cf
�fs11

�Vf
1=�Rs

1 (69)

where the matrices with an over-caret are specified as

M̃f
11(�V

f
1)=

Mf
11

��t
+�Cf

11(�V
f
1) (70)

M̃f
21(�V

f
1)=

Mf
21

��t
+�Cf

21(�V
f
1) (71)

M̃s
11= Ms

11

��t
+Cs

11+Ks
11
�t (72)

K̃s
�fs11

=Ks
�fs11


�t (73)

4. SOLVING STRATEGY

To ensure the stabilization of the numerical procedure and to obtain the accurate solutions of flow in
the dynamical FSI, we use the stabilized Newmark method [51] for the vibration of solid structure
and the PMCA proposed by Hughes and Brooks [47] for fluid. A typical solution procedure of
the time integration from � to �+�t is shown as follows.

Step 1: Predictors for fluid. The Hughes’ predictors for fluid are used as

Vf(m=0)
1(�+�t) =Vf(m=0)

1(�) +(1−�)�tV̇f(m=0)
1(�) (74)

Pf(m=0)
1(�+�t) =Pf(m=0)

1(�) (75)

Pf(m=0)
2(�+�t) =Pf(m=0)

2(�) (76)

where Vf(m=0)
1(�) , V̇f(m=0)

1(�) , Pf(m=0)
1(�) and Pf(m=0)

2(�) are the predicting setup values at iteration counter
m=0. Bayoumi and Gadala [29], Dettmer and Perić [30] and Jansen et al. [52] suggested that the
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pressure should not be subjected to time integration because the continuity of flow was enforced in
the variation formulation, instead it should be computed independently for each time increment.

Step 2: Newmark’s predictions for solid. The Newmark’s predictions of the time integration to
solid are

Us(n+1)
1(�+�t) =Us(n)

1(�)+�tVs(n)
1(�)+( 12 −
)�t2V̇s(n)

1(�)+
�t2V̇s(n+1)
1(�+�t) (77)

Vs(n+1)
1(�+�t) =Vs(n)

1(�)+(1−�)�tV̇s(n)
1(�)+��tV̇s(n+1)

1(�+�t) (78)

Step 3: Structure solver. It is easy to obtain the values of V̇s(n+1)
1(�+�t) and Vs(n+1)

1(�+�t) at time �+�t
from Equations (77) and (78) as

V̇s(n+1)
1(�+�t) =

Us(n+1)
�+�t −(Us(n)

1(�)+�tVs(n)
1(�)+( 12 −
)�t2V̇s(n)

1(�))


�t2
(79)

Vs(n+1)
1(�+�t) =Vs(n)

1(�)+(1−�)�tV̇s(n)
1(�)+��t

⎡
⎣Us(n+1)

1(�+�t)−(Us(n)
1(�)+�tVs(n)

1(�)+( 12 −
)�t2V̇s(n)
1(�))


�t2

⎤
⎦ (80)

The restricted condition equation (50) on the interface is written as

U̇s(n)

�fs(�)
=Vf(m)

�fs(�)
(81)

Substituting V̇s(n+1)
1(�+�t) = Üs(n+1)

1(�+�t) and Vs(n+1)
1(�+�t) = U̇s(n+1)

1(�+�t) into Equation (54) and replacing Vf(n)

�fs(�)

in Vf(n)
1(�) of the fifth term of the left-hand side with U̇s(n)

�fs(�)
=Vf(m)

�fs(�)
, we can obtain the equation

that is used to solve the displacement of solid Us(n+1)
1(�+�t) at time �+�t as

[
1


�t2
Ms

11+ �


�t
Cs
11+ �


�t
Cf

�fs11
+Ks

11

]
Us(n+1)
1(�+�t)

=Rs(n+1)
1(�+�t)−Bf

�fs11
Pf(m)
1(�) +

[
1


�t2
Ms

11+ �


�t
Cf

�fs11
+ �


�t
Cs
11

]
Us(n)
1(�)

+
[

1


�t
Ms

11+ �



Cs
11+ �



Cf

�fs11
−Cs

11−Cf
�fs11

]
Vs(n)
1(�)

+
[
(0.5−
)



Ms

11+ (0.5�−
)�t



Cs
11+ (0.5�−
)�t



Cf

�fs11

]
V̇s(n)
1(�) (82)

Rearranging above equation yields the solid displacements

Us(n+1)
1(�+�t) =(Ks

11+K̂s
11)

−1R̂s(n+1)
1(�+�t) (83)

where

K̂11= 1


�t2
Ms

11+ �


�t
Cs
11+ �


�t
Cf

�fs11
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Ĉs
11= 1


�t
Ms

11+ �



Cs
11+ �



Cf

�fs11
−Cs

11−Cf
�fs11

M̂s
11= (0.5−
)



Ms

11+ (0.5�−
)�t



Cs
11+ (0.5�−
)�t



Cf

�fs11

R̂s(n+1)
1(�+�t) =Rs(n+1)

1(�+�t)−Bf
�fs11

Pf(m)
1(�) +K̂s

11U
s(n)
1(�)+Ĉs

11V
s(n)
1(�)+M̂s

11V̇
s(n)
1(�)

Substituting Equation (83) into Equations (79) and (80) yields the solutions of the vibration velocity
and acceleration of solid structure at time �+�t .

Step 4: Solutions for fluid. From Equation (68), we directly obtain the increments of flow
velocity as

�Vf(m)

1(�+�t) =(Cc
11)

−1�Rc(m)

1(�+�t) (84)

Substituting Equation (84) into Equations (66) and (67) yields two equations for solving Pf(n+1)
1(�+�t)

and Pf(n+1)
2(�+�t)

Bf
11�P

f(m)

1(�+�t)+Bf
12�P

f(m)

2(�+�t) =�R̂f(m)

1(�+�t) (85)

Bf
21�P

f(m)

1(�+�t)+Bf
22�P

f(m)

2(�+�t) =�Rf(m)

2(�+�t) (86)

where

�R̂f(m)

1(�+�t) =�Rf(m)

1(�+�t)−K̂s
�fs11

�Vs(n+1)
1(�+�t)−M̃f

11[(Cc
11)

−1�Rc(m)

1(�+�t)](Cc
11)

−1�Rc(m)

1(�+�t)

�R̂f(m)

2(�+�t) =�Rf(m)

2(�+�t)−M̃f
21[(Cc

11)
−1�Rc(m)

1(�+�t)](Cc
11)

−1�Rc(m)

1(�+�t)

Step 5: Correction for fluid. Flow velocity and pressure at time �+�t are finally corrected as

Vf(m+1)
1(�+�t) =Vf(m)

1(�+�t)+��t�V̇f(m)

1(�+�t) (87)

Pf(m+1)
1(�+�t) =Pf(m)

1(�+�t)+�Pf(m)

1(�+�t) (88)

Pf(m+1)
2(�+�t) =Pf(m)

2(�+�t)+�Pf(m)

2(�+�t) (89)

Step 6: Convective outflow condition at the outlet. The boundary condition of Vf(m+1)
outlet(�+�t) at

the outlet surface A2 is treated as a convective outflow condition. Following the Reference [4],
this can be written as

Vf(m+1)
outlet(�+�t)(Nx ) = − V̄f(m)

inlet(�+�t)�t

�x
[Vf(m)

outlet(�+�t)(Nx )−Vf(m)

outlet(�+�t)(Nx−1)]

+Vf(m)

outlet(�+�t)(Nx ) (90)

where Nx is the number of the grid lines in the streamline direction and V̄f(m)

inlet(�+�t) is the mean
flow velocity at the inlet surface.
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5. NUMERICAL EXAMPLES

5.1. Example 1: 3-D lid-driven square cavity flow

The lid-driven square cavity flow is a typical benchmark problem to validate new numerical
techniques (see, for example, References [25, 27, 53]). This example is also chosen to verify the
model and numerical methodology developed here. A uniform mesh of 51×51×51 is used in
present study. The stiffness of the solid walls is sufficiently large in order to invalidate the interaction
between fluid and solid structure. The computed velocity fields and the pressure contours for flow
of the Reynolds numbers of 1000, 400 and 100, respectively, are shown in Figures 3 and 4. The
numerical results from Reference [53] based on the DQ method and Reference [27] based on the
least-square FEM are also exhibited in Figures 3 and 4 for purpose of comparison. It is seen that

Figure 3. Comparisons of velocity fields at x=0.5 for Reynolds numbers of 1000(left), 400(middle) and
100(right). Top: present paper, middle: Reference [53] and bottom: Reference [27].
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Figure 4. Comparisons of pressure fields at x=0.5 for Reynolds numbers of 1000(left), 400(mid) and
100(right). Top: present paper, middle: Reference [53] and bottom: Reference [27].

our numerical results agree well with those of References [27, 53], and a significant advantage of
our method is monolithically extending solid dynamics into flow.

5.2. Example 2: Flow in a hydro-turbine with dynamical FSI

5.2.1. Geometry of flow passage. The flow geometry in this example is a blade passage of a model
unit of a real hydro-turbine, which was used in Reference [43] by the same authors. For the sake
of convenience and completeness, we give a brief description of the main specifications of this
hydro-turbine rig. The machine has a 450mm diameter turbine runner and 10 blades, 23 moving
and stay vanes. The lengths of the curved edges of the blade are L1=166mm at the inlet and
L2=281mm at the outlet. The lengths of the crossing lines of the blade with the crown and the
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band are L3=130mm and L4=197mm, respectively. The pitches of the blades are S1=69mm at
the crown and S2=102mm at the band. The mean chord length of the blade is L=157.3mm. The
fluid domain in the present study is surrounded by the surfaces of A1–A6, in which the surfaces
of A1 and A2 are the inlet and outlet of the passage, and the surfaces of A3–A6 are the interfaces
between fluid and solid. The main components of the turbine blade passage and their geometrical
configurations are shown in Figure 1, while the details of the test rig and test implementation on
the turbine unit can be found in Reference [43].

Two blades are only considered as deformable structure, whose Young’s modulus is 2500MPa,
Poisson’s ratio 0.384 and the mass density 1280kg/m3. Other solid components except these two
blades are treated as rigid body. So, the elastic blades are rigidly attached to the crow and the
band at the two ends of the blade.

5.2.2. Meshes. The fluid domain is discretized by using a multilinear velocity/constant pressure
element used in References [25, 47]. The elements are of eight-noded hexahedron form and the
structured mesh is used for fluid and solid domains. The size of the fluid element is generally
controlled with the grid intensity of L2×L4×S2=200×140×52, while the meshes near the solid
walls are locally densified. The total number of the fluid elements is approximately 1.8 millions.
The elements for each blade are 84 000. The nodal number on the two sides of the deformable
interfaces between fluid and solid is the same. The elements for the domains are shown in Figure 5
(red presents elements attached to the solid walls).

5.2.3. Boundary conditions and control parameters. The known inflow velocity distributions on
the inlet surface of A1 at each time step �t are taken from Reference [43]. The convective outflow
conditions at the outlet surface of A2 are correspondingly computed in time using Equation (90).
No-slip rigid wall conditions are applied on the surfaces of A5 and A6. The deformable interfaces
of A3 and A4 are used as the periodical boundaries in the pitchwise direction of the blade cascades.

Elements in fluid
domain 

Refined elements in red
within area near walls

Red elements near
walls

Elements in solid
domain

Figure 5. Rarefied elements attached to the domains.
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Figure 6. Comparisons of pressure, velocity and X-vortex iso-surface at time of t/T =7.00.
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Figure 7. Comparisons of pressure, velocity and X-vortex iso-surface at time of t/T =8.35.
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Acceleration sensors 
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pressure and (suction) surfaces

Leading edge 

Trailing edge

Pressure side

Suction side

48(53)

50(55)

51(56)

49(54)

692

659

Figure 9. Pressure and acceleration sensors mounted at the blade.
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Figure 10. Comparisons of measured and computed acceleration histories at point 692 (history is filtered
from frequency range of 0.1Hz–80Hz).

The opening of the guide vanes is taken as 22mm. The incident angle of the inflow is about 39◦
and the mean velocity of the inflow based on the inlet surface of A1 is V̄ f∞ =1m/s. The sweeping
period of flow from the inlet to the outlet is T = L/V̄ f∞ =0.1573s. The flow Reynolds number
is Re= V̄ f∞L/�=148400 (� is kinetic viscosity). The stabilized control parameters for fluid and
solid structure are equally taken as �=�=0.5 and 
= 1

6 .
The size of the time step for flow is taken as �t f=0.0004s in simulation and time duration is

1.573 s, which is 10 times of the sweeping period; while the size of the time step for the structure
vibration is taken as �t s=0.004s, being 10 times of the flow step. This staggered solving strategy
in time is to ensure numerical stabilization without losing accuracy of the vibration solution.
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Figure 11. Comparisons of measured and computed acceleration histories at point 659 (history is filtered
from frequency range of 0.1Hz–80Hz).
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Figure 12. Comparisons of measured and computed pressure histories at point 48 on pressure side.

5.2.4. Correction of meshes near vibrating walls. The peak displacement of the flow-induced
blade vibration in this example is about 0.01mm, while the minimum size of the elements near
the vibrating walls is about 0.5mm, which is 50 times of the peak displacement. It implies that the
fluid mesh distortion caused by the wall vibration is small against the element scale. Therefore,
the correction of the meshes in time is not required in the computation.
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Figure 13. Comparisons of measured and computed pressure histories at point 53 on suction side.

1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930

 Point 49 computed 
 Point 49 measured

P
re

ss
ur

e/
P

a

0.0

Time/s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Figure 14. Comparisons of measured and computed pressure histories at point 49 on pressure side.

5.2.5. Flow fields in the blade passage. The numerical computations have been performed using
the authors’ own code as a solver. The software of TECPLOT� is used as a post-processor for
analyzing the computing data and ANSYS� as a pre-processor for obtaining the nodal coordinate
information of the elements. The rotation of the runner is not considered in this example in order
to better investigate intrinsic features of turbulences in the strongly distorted passage with the
vibrations of the blades.
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The snapshot comparisons of the pressure distributions, the flow velocity and vortex in
x-direction (in Cartesian reference) at the regions near the vibrating walls are shown in Figures 6–8,
at three dimensionless times of t/T =7.00, 8.35 and 9.10, respectively. It is seen that the general
tendencies of pressure and velocity distribution are in good agreement with those by LES in
Reference [43]. A strong vortex at the leading zone of the passage is clearly demonstrated and the
features of the flow field in this zone are roughly the same except in the lower and the right upper
zones of the passage. As flow enters into the lower part zone of the passage, the flow structures
become more complicated due to strongly curved geometry of the passage, and the evolution of
the vortex is fully developed. The variations of the distribution of the flow patterns between LES
in Reference [43] and FEM in this paper gradually become clear because the flow turbulence in
this zone is significantly strengthened.

5.2.6. Pressure and vibrating acceleration at specified points of blade. Laboratory experiment for
the corresponding case was carried out to measure the pressure at the blade and the acceleration of
the blade vibration at the specified locations. The test rig used is a turbine model unit (see Reference
[43]). Figure 9 shows that eight pressure transducers of the type LL-072-25A manufactured by
Kulite Company and two acceleration transducers were mounted at the specified locations of the
blade. The computed and measured accelerations and pressure at the specified locations are shown
in Figures 10–15. It is seen that the computed acceleration agrees well with the measurements.
A good agreement between the computed and measured tendencies of the pressure variation with
time was also obtained, though the numerical model systemically underestimates the pressure. The
maximum relative error between the computed and measured pressure is about 8%. Figure 16 is a
quantitative comparison of the time-averaged pressures at the specified locations. It is seen that the
numerical results obtained using the methodology proposed in the present study have a reasonable
tendency compared with measured results, although the time-averaged computed pressures are
systemically less than the measured with the maximum variation being less than about 100 Pa,
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Figure 15. Comparisons of measured and computed pressure histories at point 54 on suction side.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1299–1330
DOI: 10.1002/fld



FEM SIMULATION OF TURBULENT FLOW WITH FSI 1327

1000

1200

1400

1600

1800

2000

2200

48

Specified points

P
re

ss
ur

e/
P

a

Measured

FEM in this paper

49 50 51 52 53 54 55 56
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Figure 17. Iterating convergence behaviors within a typical time step.

or, nearly 1 cm head. The reason is that the test water head supplied is slightly bigger. Figure 17
exhibits convergence behaviors of both flow and solid structures in simulation.

6. CONCLUSIONS

A fully coupled mathematical model is established to describe turbulent flow in strongly curved
turbine blade passage with the dynamical FSI due to the flow-induced blade vibrations. The model
is created by combining the incompressible viscous Navier–Stokes equations with the elastically
small deformation vibration equations by using hybrid generalized variational principle of fluid and
solid mechanics. The solving strategy is based on the stabilized finite element formulations. The
Newmark method and the PMCA proposed by Hughes are employed in the time integration for
solid and fluid, respectively. The time-staggered iteration scheme used in the paper can effectively

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1299–1330
DOI: 10.1002/fld



1328 L. ZHANG, Y. GUO AND W. WANG

suppress numerical dissipation in simulation for the dynamical FSI in small deforming structure
vibrating problems and ensure numerical iteration convergence. Good agreement between the
computation and measurements indicates that the model and methodology developed in this study
can be applied to simulate the turbulent flow involving a complex geometry and the flow-induced
structure vibration with the dynamical FSI.
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